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ABSTRACT

Accurate and efficient characterization method of
compensated H-plane waveguide bends is developed by
combining the port reflection coefficient method and the
mode-matching method. Convergence properties and
reliabilities of the obtained numerical results are veri-
fied. Variations of the return loss of three types of com-
pensated bends are investigated with various compensa-
tion dimensions. Wide-band and low return loss bends
with the obtained optimal compensation dimensions are
fabricated and tested, and the measured results agree
well with the theoretical predictions.

INTRODUCTION

Waveguide bend is widely used in many composed
waveguide components and subsystems, like power di-
viders, multiplexers, couplers and satellite beamforming
networks [1]. In the design of waveguide bends, two ob-
jectives are most frequently considered as of paramount
importance. One is the minimization of the return loss
of the bend in a frequency band as wide as possible, and
the other is the minimization of the size of the bend. To
end these objectives, compensated waveguide bends are
widely utilized.

A detailed, albeit not exhaustive, review of past pub-
lications on waveguide bends reveals that, most of the
papers using the full-wave methods addressed primar-
ily analytical and numerical techniques for achieving
minimum approximations and maximum accuracy and
efficiency in the treatment of compensated waveguide
bends, and they contained little information concern-
ing dimensioning rules for realizing compact-sized, wide-
band and low return loss bends [1]-[8].

In this work, by combining the port reflection coef-
ficient method [9] and the mode-matching method, we
implement comparative studies of three types of com-
pensated H-plane waveguide 90° right angle bends, as
shown in Fig. 1. These waveguide bends are of small
size and simple structure, without any additional match-
ing elements, like septums or screws. This allows easier
fabrication and thus smaller tolerance errors. With the
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Figure 1: (a) An H-plane waveguide right angle
corner bend, (b) a mitered bend, (¢) a squarely cut

bend, and (d) a circular bend.

obtained optimal compensation dimensions, wide-band
and low return loss bends are theoretically predicted and
experimentally realized.

ANALYSIS METHOD

The general principle of the port reflection coefficient
method (PRCM) for multi-port microwave networks was
interpreted in [9]. In the case of a two-port network, it
was found that if we can obtain three pairs of reflection
coefficients Rgi) and R(Zi) (i = 1,2,3) at Port 1 and 2,
we can solve S1; and Ss2 by using

Suo= [RVRY - RPRP)(RY - RY) — (R
Ry — RPRPHRY = RIS - 7Y)

(7 = B = (B = ROV = R (1a)

R(ll)R(l) R(2)R(Z2) _ (Rgl) _ Rf))gﬂ
S22 = D _ 52 (1)
Ry — Ry
For a reciprocal network, S5 = S31, we have
5o = jE\/(Sn — RY)(S22 — REY) (2)
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Figure 2: Calculation scheme of the reflection co-
efficients at Port 1 and 2.

In order to obtain the reflection coefficients at Port 1
and 2 of a waveguide bend in a convenient way, we place
a short circuit at Port 2, and approximate the slanted
or curvilinear part of the bend by a staircase, as shown
in Fig. 2(a). Then the reflection coefficient at Port 2
can be obtained in advance by using

Ry = —¢l?8202 (3)

here 35 is the phase constant of the operating mode at
Port 2, and I3 is the distance between the short circuit
and the discontinuity region. On the other hand, the re-
flection coefficient R; at Port 1 can be now easily com-
puted by using the full-wave mode-matching method,
together with the generalized scattering matrix tech-
nique. This 1s because after the termination of Port 2
by a short circuit, the analyzed structure can be viewed,
looking form Port 1, as a one-port structure comprised
of cascaded waveguide step-junctions only, as illustrated
in Fig. 2(b).

Repeating the above calculation process three times
by moving the short circuit at Port 2 with different po-
sitions, we get three pairs of reflection coefficients at
Port 1 and 2. Substituting the obtained reflection co-
efficients into (1) and (2), we get the desired scattering
parameters of the compensated bend.

Higher order modes excited around the corner re-
gion have been taken into consideration in the mode-
matching treatment of the step-junctions. Also the gen-
eralized scattering matrix technique is used for connect-
ing the cascaded step-junctions. Therefore, the obtained
results are accurate full-wave solutions.

NUMERICAL RESULTS

In Figs. 3(a) and (b), the calculated scattering pa-
rameters of a mitered and a circular bend are shown
with different numbers of division steps used in the
staircase approximation of the slanted or circular part
of the bend. The results obtained by the boundary-
element method (BEM) [3] are also drawn in Fig. 3(a)

0
2 L
4
D or
Q
= °rp 00 o0BEM[E 10
i g
QN -10 — - - 10 steps 7
12 0y T -
! — - 40 steps
214 | 60 steps c/a=1.0 i
—16""""""""""
1 1.2 1.4 1.6 1.8 2
Normalized frequency f/fc
@
0 T T T T
~~
m
o
N
~
%2}

1 1.2 1.4 1.6 1.8 2
Normalized frequency f/fc

(b)

Figure 3: Variation of the scattering parameters of
a mitered and a circular bend with different num-
bers of steps used in the staircase approximation.

for comparison. It is seen that when the number of
steps is greater than 40, converged results are guaran-
teed. When 60 steps are used in the approximation,
the calculation time of each frequency point is about 20
seconds on a SUN SPARC server 1000 workstation.
Chan et al. [10] reported that staircase approxima-
tion of curvilinear boundaries in the FDTD method may
yield converged but unreliable results. They found that
even a large number of steps are used in the approxima-
tion, a slight displacement of two or four steps may cause
quite large variation of the results. Since our numerical
results are obtained with a staircase approximation of
the compensated part, the reliability of the results is ver-
ified here by using the method of [10]. As shown by the
dashed lines in Fig. 4, among the many steps used in the
staircase approximation, we move four arbitrary steps
by half a step and recalculate the scattering parame-
ters of the bend. The steps can be displaced inwards
or outwards, and in Figs. 4(a)-(d) we illustrated four
choices of displacement used in our verification. The
difference between the results obtained with and with-
out the displacement of the steps is shown in Fig. 5. It
is seen that with the increase of the number of steps, the
difference becomes smaller and smaller. This suggests
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Figure 4: Displacement of steps for the verification
of the reliabilities of the results.

that stable and reliable results are guaranteed when the
number of steps used for the staircase approximation is
large enough.
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Figure 5: Difference between the scattering param-
eters of a mitered bend calculated with and without
the displacement of steps. (a) S11, (b) Sa1.

Variations of the return loss of the three types of
bends with various dimensions of the compensated parts
are shown in Figs. 6-8. In the case of the mitered bend,
the low return loss (|S11] < —30 dB) frequency band is
available when 0.61 < ¢/a < 0.76. The optimal compen-
sation dimension is ¢/a=0.631, at which the low return
loss bandwidth reaches approximately 39%. In the case
of the squarely cut bend, the low return loss frequency
band is available when 0.34 < ¢/a < 0.45. The op-
timal compensation dimension is ¢/a=0.347, at which
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Figure 6: Variation of the return loss of a mitered
bend with various dimensions of the mitered part.
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Figure 7: Variation of the return loss of a squarely
cut bend with various dimensions of the cut part.

the low return loss bandwidth is about 33%. In the case
of the circular bend, the low return loss frequency band
is available when 1.10 < ¢/a < 1.5. When r/a=1.18 ~
1.20, the return loss is less than —30 dB over the whole
single mode frequency band.

Based on the obtained optimal compensation dimen-
sions, three types of H-plane waveguide bends are de-
signed and fabricated. The dimensions of the waveg-
uide used are a=19.050 mm and b=9.525 mm, and the
measurement is made in the frequency range 10 ~ 15
GHz. The calculated and measured return loss of the
squarely cut bend are compared in Fig. 9. The solid line
indicates the calculated result of the bend with the opti-
mal compensation dimension ¢/a=0.631. However, the
actual dimension of the fabricated bend is ¢/a=0.636
because of the fabrication error of 1 mm. The return
loss of the bend is recalculated using the actual dimen-
sion ¢/a=0.636, and the result is plotted in Fig. 9 by
the dotted line. It agrees very well with the measured
data over the whole frequency band.

The calculated and measured return loss of the circu-
lar bend are compared in Fig. 10. It is seen that over the
whole frequency band, the measured return loss is of the
level of —35 dB. There is a small discrepancy between
the theoretical and measured values. This is reasonable
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Figure 8: Variation of the return loss of a circular
bend with various radii of the circular part.
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Figure 9: Comparison between the calculated and
measured return loss of a squarely cut bend.

because a return loss of the level of —40 dB is actually
quite small and is thereby difficult to be measured pre-
cisely. Moreover, in the measurement a matching-load
with a return loss of —40 dB or less is used, and this will
surely introduce additional measurement errors. There-
fore, the agreement between the calculated and mea-
sured results can be say good. Above all, a full-band
matched bend is theoretically predicted and experimen-
tally realized by using this simple circular structure,
which is smaller than most previously reported curved
bends because the inner side of the circular bend here
is a sharp 90° angle corner.
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